Model Free Reinforcement Learning (MFRL) has shown significant promise for learning dexterous robotic manipulation tasks, at least in simulation. However, the high number of samples, as well as the long training times, prevent MFRL from scaling to complex real-world tasks. Model-Based Reinforcement Learning (MBRL) emerges as a potential solution that, in theory, can improve the data efficiency of MFRL approaches. This could drastically reduce the training time of MFRL, and increase the application of RL for real-world robotic tasks. This article presents a study on the feasibility of using the state-of-the-art MBRL to improve the training time for two real-world dexterous manipulation tasks. The evaluation is conducted on a real low-cost robot gripper where the predictive model and the control policy are learned from scratch. The results indicate that MBRL is capable of learning accurate models of the world, but does not show clear improvements in learning the control policy in the real world as prior literature suggests should be expected.